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Abstract 

The results are presented of analytical and numerical 
study of elastic reflection high-energy electron diffrac- 
tion (RHEED) from a crystalline surface, which show 
that the positions of the resonance parabolas in RHEED 
patterns are related to the positions of the peaks of the 
one-dimensional effective density of states associated 
with the motion of the incident electron in the direction 
normal to the surface. This illustrates a fundamental 
difference between resonance scattering of electrons 
and Bragg diffraction, the origin of the latter being 
known to be associated with the existence of forbidden 
gaps in the spectrum of the density of states. It is also 
shown that there are cases where the number of 
resonance parabolas observed in a RHEED pattern 
exceeds the number of surface states that can be 
identified for a given surface. 

1. Introduction 

Recent experimental developments in reflection high- 
energy electron diffraction (RHEED) and reflection 
electron microscopy, as well as widespread applica- 
tion of these techniques to the study of structure and 
dynamic processes on crystal surfaces, have generated 
considerable interest in problems associated with the 
theoretical interpretation of electron diffraction pat- 
terns observed at grazing incidence (Larsen & 
Dobson, 1987). Since 1933 (Kikuchi & Nakagawa, 
1933), it has been known that the appearance of the 
brightest features seen in RHEED patterns is asso- 
ciated with the so-called resonance scattering of 
electrons from surfaces, i.e. with a process the origin 
of which has recently been discussed in a number of 
publications by Ichimiya, Kambe & Lehmpfuhl 
(1980), Cowley (1982), Marten & Meyer-Ehmsen 
(1985), Meyer-Ehmsen (1987) and Lehmpfuhl & 
Dowell (1986) [for a review of earlier work see 
Dudarev & Whelan (1996)]. Peng & Cowley (1986), 
Wang (1989) and Ma & Marks (1989) considered 
theoretical aspects of the problem of resonance 
scattering using multislice and Bloch-wave formal- 
isms. Spence & Kim (1987) considered possible 
application of resonance scattering to adatom-site 
determination. Bleloch, Howie, Milne & Walls 

(1989) analysed the dependence of energy-loss spectra 
on the angle of incidence in the vicinity of resonance 
conditions. James, Bird & Wright (1989) and James 
(1990) considered the link between resonance effects 
observed in transmission and reflection geometries of 
diffraction. Gajdardziska-Josifovska & Cowley (1991) 
have considered the geometry of resonance parabolas 
while Smith, Lehmpfuhl & Uchida (1992) carried out 
computer simulations of resonance effects in conver- 
gent-beam RHEED patterns. Zuo & Liu (1992) 
studied convergent-beam RHEED patterns and simu- 
lated the results using a truncated potential model. 
Zhao & Tong (1993) carried out extensive numerical 
analysis of the solution of RHEED equations corre- 
sponding to resonance orientations. Experimental 
investigations of resonance scattering have demon- 
strated that it leads to the appearance of bright 
parabolas in RHEED patterns similar to those shown 
in Fig. 1, and recently it has been found by Reginski, 
Lamin, Mashanov, Pchelyakov & Sokolov (1995) that 
diffraction conditions corresponding to resonance 
reflection of electrons from a surface are particularly 
suitable for observation of RHEED intensity oscilla- 

tions during expitaxial growth. 
In the past, several alternative explanations have 

been put forward for the origin of resonance 
parabolas. Marten & Meyer-Ehmsen (1985) sug- 
gested that resonance effects could be explained in 
terms of monolayer resonances assuming that 
electrons are diffracted into bound states of a 
single-atom layer parallel to the surface and that 
they are channelled inside a layer before being 
diffracted back into the vacuum region [a general- 
ization of this model to the case of bilayer 
resonances has been recently considered by Horio 
& Icbimiya (1996)]. This model seemed to explain 
well the results obtained for the (111) surface of 
platinum (Marten & Meyer-Ehmsen, 1985). How- 
ever, it remained somewhat inconsistent, since one- 
or two-dimensional states bound by the potential of 
a single plane or a row of atoms do not represent 
the true eigenstates of the Schr6dinger equation 
describing motion of the incident electron in the 
potential of the crystal. In particular, the approx- 
imation adopted by Marten & Meyer-Ehmsen (1985) 
makes it impossible to say whether the bound states 
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involved in the formulation of the model should be 
considered as surface or bulk states. 

Later, Peng & Cowley (1986) attributed the appear- 
ance of resonance parabolas to resonance scattering of 
electrons via surface states (Peng & Cowley, 1986), i.e. 
they assumed that the origin of RHEED resonances is 
associated with the same process of scattering as that 
which is known in low-energy electron diffraction [see 
e.g. reviews by McRae (1979) and by Echenique & 
Pendry (1989)]. However, recent demonstration by 
Dudarev & Whelan (1993, 1994a,b,c, 1995) of the fact 
that the intensity of some of the resonance peaks can be 
calculated quantitatively using a tight-binding approach 
in which tunnelling between states confined by neigh- 
bouring potential wells was neglected [which essentially 
represents a generalization of Meyer-Ehmsen's (1987) 
model to the case of a sequence of atomic planes 
containing tightly bound states] has shown that at least 
in some cases the presence of surface states is not 
essential. 

The latter statement has been questioned by Peng 
(1994) who noted that the tight-binding approximation 
is not applicable to some cases (indeed, it follows from 
examination of the geometry of resonance parabolas 
that some of them result from scattering involving 
states, the energy of which lies above the maximum of 
the potential of the crystal), and who argued, on the 
basis of the results of numerical simulation, that the 
appearance of resonance peaks is associated with 
degeneracy of bulk Bloch states, a condition that was 
thought to be equivalent to the existence of a surface 
state (Peng, 1994). 

The question that therefore remains to be answered is 
that, if tunnelling through potential wells separating 
tightly bound states is included in the formulation of the 
model (leading therefore to the transformation of the 
tightly bound states into actual eigenstates of the 
relevant Schr6dinger equation), what effect will this 
have on the shape and the position of resonance 
parabolas in RHEED patterns? For example, this 
point concerns 'intermediate' resonating states corre- 

sponding to negative total energy that at the same time 
exceeds the maximum of the potential of the crystal. 
Obviously, these states cannot be treated using the tight- 
binding picture but they are included in the considera- 
tion given below. 

In this paper, we attempt to answer the above 
question and to analyse the problem of the origin of 
the resonance parabolas using an integral-equations 
approach proposed by Kambe (1967) and examine the 
arguments that have been proposed recently by various 
authors (Dudarev & Whelan, 1993, 1995; Peng, 1994). 
The details of the mathematical formalism involved are 
described in a recent review by Dudarev & Whelan 
(1996). The use of integral equations has the advantage 
of being semi-analytical, i.e. within the framework of 
this approach one can identify the parameters respon- 
sible for the appearance of resonance peaks of surface 
reflectivity without solving the equations themselves. 
Our analytical results have been obtained using the two- 
rod approximation proposed by Ohtsuki (1968). Since 
here we are concerned with obtaining a qualitative 
answer to the question formulated above, we confine 
our analysis to the case of relatively large grazing 
angles of incidence where resonance effects associated 
with a particular g vector can be separated from other 
effects. In the case of small grazing angles of incidence, 
we have not been able to identify a parameter using 
which an analytical treatment might be developed. This 
leaves numerical methods as the only option available 
for studying RHEED at relatively low grazing angles of 
incidence. 

In the case of large grazing angles of incidence, we 
compare the result of analytical study with the result of 
numerical computations carried out using a many-rod 
approach, the reliability of which has been recently 
confirmed by comparison with the methods developed 
by other researchers (Ichimiya, 1995).* Our main 

* A comparison of rocking curves calculated using various numerical 
methods has been recently carried out by A. Ichimiya, who found that 
the 'rocking curves calculated [independently] by Dudarev, Korte, 
Maksym and Peng are nearly exactly the same'. 
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Fig. 1. A 'convergent-beam'-like RHEED 
pattern calculated for the Pt (111) surface 
for the direction of incidence close to the 
(112) axis using five rods [the zero-order 
(000) rod and the first two side rods on 
either side of it, -t-(220), +(440)] belong- 
ing to the two-dimensional zero-order 
Laue zone for E = 100 keV. The distribu- 
tion of intensity shown in this figure gives 
the dependence of intensity of the spec- 
ular beam as a function of two angles of 
incidence. Note two double parabolas 
emerging from the centre of the pattern 
and ending near upper right and left 
corners of the picture, respectively. 
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conclusion is that the arguments employed-in the study 
of the tight-binding model (Dudarev & Whelan, 1994a) 
can be extended to a more general case by making use 
of some analytical properties of the Green function of 
the one-dimensional Schrtdinger equation. We find that 
the appearance of resonance parabolas in RHEED 
patterns is associated with the peaks of the effective 
one-dimensional density of states corresponding to the 
motion of an electron in the direction normal to the 
surface. These peaks correspond to the bands of bulk 
Bloch states as well as to surface states provided that the 
latter can be identified for a given surface. Our 
conclusion becomes trivial in the limiting case where 
tunnelling between states localized in neighbouring 
potential wells can be neglected (in which case, no 
distinction can be made between bulk and surface 
states), and at the same time it provides new information 
in the case where the effect of tunnelling is substantial. 
We show that the 'surface-state' hypothesis cannot 
explain the origin of all the resonance parabolas that are 
observed in RHEED diffraction patterns. 

2. The kinematics of resonance scattering 

We start from a qualitative consideration that illustrates 
the more rigorous treatment described below. Despite 
its relative simplicity, this purely kinematical considera- 
tion makes it possible to introduce almost all the 
parameters that determine the position and intensity of 
the resonance parabolas in a RHEED pattern. Let a 
high-energy electron be incident from z--+ - o o  on a 
crystal surface, which is assumed to be parallel to the 
plane z -- 0. Denote the projection of the wave vector k 
of the incident electron on the (x, y) plane by kll, so that 
k = ( k , , k z ) .  The wave vector of the electrons 
specularly reflected from the surface is given by 
k = (k l l , -kz) .  If we neglect the periodicity of the 
potential of the crystal in the (x, y) plane parallel to the 
surface, the process of scattering can be represented in 
the form of superposition of free motion parallel to the 
surface (the energy El °) associated with which is equal 
to h2k~/2m) and one-dimensional motion in the laterally 
averaged potential Uo(z). The energy of this one- 
dimensional motion towards and away from the surface 
is given by E~ °) = hZkZ/2m and, for any glancing inci- 
dence angle (, k z = k sin (, so that the quantity ~E~ °) is 
always positive. 

Now consider the effects associated with the 
periodicity of the crystal potential in the x and y 
directions. The optical Potential U(r) = U'(r) + iU"(r) 
(the imaginary part of which results from inelastic 
scattering and the influence of surface disorder 
(Dudarev, Peng & Whelan, 1992, 1995) can be 
expanded as a two-dimensional Fourier series 

U(r) -- ~]  Ug,(Z)exp(i~. R), (1) 
ge 

where R = (x, y) is a two-dimensional vector parallel to 
the surface of the crystal and g' is a reciprocal-lattice 
vector of the two-dimensional lattice. The two-dimen- 
sional periodicity of the potential gives rise to elastic 
scattering involving discrete momentum transfers hg' 
parallel to the plane of the surface. Consider the process 
of scattering associated with a particular reciprocal- 
lattice vector g parallel to the surface. As a result of 
diffraction, the electron is accelerated (or decelerated) 
in the direction parallel to the surface, so that the (x, y) 
projection of its wave vector after the scattering is given 
by kll-k-I~ and the energy of motion parallel to the 
surface E~II ) is equal to h2(kll q- g)2/2m. Bearing in mind 
that the kinematics of elastic scattering must obey the 
energy-conservation law, we find that the energy of 
motion of the electron in the direction normal to the 
surface E~z ) is given by ~lt °) + ~ o ) _  E~II ), which is equal 
to h2K~g/2m, where ~g = k 2 - (kit + g)2. Taking 
account of the fact that there exists no condition 
determining the sign of the quantity E~ g), we can 
distinguish between three possible cases: case (I) when 
K~g > 0, case (11) when K~g = 0 ,  and case 0II) 
when K~g < 0. The case that is realized in a particular 
experiment depends on the mutual orientation of the 
wave vector k of the incident electron beam and the 
reciprocal-lattice vector g. In case (I), the side beam is 
reflected back into vacuum, in case (II), the side beam 
propagates in the direction paralle~ to the surface, and in 
case (111) (which corresponds to negative E~ g), the side 
beam becomes evanescent, i.e. the component of the 
wave function associated with it attenuates exponen- 
tially in the vacuum region so that the corresponding 
diffraction spot disappears below the shadow edge. We 
use the term 'resonance scattering' to describe peaks in 
the intensity of the specular beam, which are often 
observed in the geometry of scattering corresponding to 
case 011), i.e. to E~z ) < 0. 

Recently, Dudarev & Whelan (1993, 1995) have 
shown that the existence of a band of tightly bound 
one-dimensional states localized in the potential 
wells corresponding to atomic planes parallel to 
the surface gives rise to a resonance enhancement of 
the intensity of the specular beam at E ~ ) _  ~ e 0, 
where e 0 < 0 is the energy of the centre of the 
band. Generalizing these arguments, we can show 
that, in the case where there are n well separated 
bands of tightly bound states in the one-dimensional 
potential Uo(z ) situated at negative e - - e  0 . . . . .  e n, 
there exist n resonance peaks the positions of which 
correspond to E~gz ) _~ e o . . . . .  en. Proceeding further, 
we may say that it is reasonable to expect that the 
positions of the resonance peaks are related to the 
positions of the peaks of the one-dimensional density 
of states associated with the potential Uo(z ) and 
corresponding to negative values of the energy E~ ). 
The results obtained from the study of the tight- 
binding model also suggest that the relative heights 
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of the peaks depend on parameters determining the 
strength of resonance coupling between two rods 
involved in the process of scattering at a particular 
angle of incidence and on the magnitude of the 
imaginary part of the potential. Below, we present 
some arguments following from the results of both 
analytical and numerical studies of the equations of 
the theory of RHEED, which confirm the qualitative 
considerations given above. 

3. Resonance scattering from the optical potential 

We start from an analytical study of the integral 
equations of the theory of RHEED describing elastic 
scattering of high-energy electrons from a crystal 
surface. We make no assumption regarding the 
spectrum of the states involved in the process of 
resonance scattering, so that our conclusions remain 
valid both in the case of tight binding as well as in 
the weak-coupling limit. Our treatment is based on a 
theorem according to which, for an arbitrary one- 
dimensional Schr6dinger equation, its Green function 
can be expressed in the form of a linear combina- 
tion of two independent solutions of this equation. 
Using this theorem, we show that the Wronskian of 
those two linearly independent solutions is, on the 
one hand, a quantity the imaginary part of which is 
related to the effective one-dimensional density of 
states of the Hamiltonian and, on the other hand, a 
parameter that determines the magnitude of the 
resonance contribution to the surface reflectivity. 
Finally, we derive a simple analytical formula for 
the amplitude of resonance scattering, which makes 
it possible to separate the contributions to the 
surface reflectivity resulting from processes involving 
surface and bulk states in the one-dimensional 
potential Uo(z ) and to answer the question about 
the origin of the resonance parabolas present in 
RHEED patterns. 

Representing the wave function q/(r) of the high- 
energy electron as a two-dimensional series 

q/(r) = ~ ~g,(z)exp[i(kll + g'). R] (2) 
g, 

and employing the two-rod approximation (Ohtsuki, 
1968), we arrive at a system of two integral equations 
describing resonance diffraction of high-energy elec- 
trons from a crystal surface (Dudarev & Whelan, 
1994a,b, 1995): 

~0(Z) = ~ro(+) (Z) + f dz'G(z, z~, h2K2 /2m)U_g(Z~)~g(z ~) 

~/'g(Z) = f dz'G(z, z', h2K 2/2m)Ug(z')~o(Z'), (3) 

where K~g = k 2 - ~11 + g)2 and K 2 = k 2. In (3), the 
( )  

wave function q~K0 (z) is the solution of the one- 
dimensional problem of diffraction 

- (hZ/2m)[Oz~(r+)(z)/Oz2 ] + Uo(z)cIg~)(z) 

= (hZKZ/2m)~(r+)(z), (4) 

satisfying the asymptotic condition at z --+ - o o  

• ~(z )  -- exp(iKoz) .+- R(0 p°0 exp(-iKoz) (5) 

and G(z, z', E) is the Green function of the Schr6dinger 
equation of the form 

{E - [-(hZ/2m)(Oz/o'z 2) + Uo(Z)]}G(z, z', E ) = 6(z - z'). 

(6) 

In the limiting case where the Fourier components of 
the potential U+g(z) giving rise to lateral momentum 
transfer can be considered as a perturbation (this may, 
for example, correspond to the case of relatively high 
temperatures), the amplitude of the specular reflection 
can be found using the one-dimensional distorted=wave 
approximation as 

= /~( res )  R0 R~ p°t) + " 0  , (7) 

where 

" ~ ( + ~ z )  "'0/?(res) "-- -(im/hZKo) f f dz O~CPKo ~, 
t 2 2 t (+ )  t × U_g(z)G(z, z ,  h Kg/2m)Ug(z )Oro (z). (8) 

Equation (7) shows that there exist two processes of 
scattering contributing to the amplitude of the specular 
beam. The first (the so-called 'potential', i.e. non- 
resonance) contribution results from diffraction of 
electrons by the one-dimensional potential Uo(z ). The 
magnitude of R0 (p°t) depends only on the glancing angle 
of incidence and is independent of azimuth. The second 
('resonance') contribution results from the process of 
virtual scattering via the states corresponding to 
negative energy E~g)= h2K2/2m < 0, which is asso- 
ciated with momentum transfers hg and - h g  is the 
direction parallel to the surface. To avoid misunder- 
standing, we should emphasize that both R0 (p°t) and R(0 res~ 
result from scattering of electrons by the same potential 
U(r), and in separating these two terms we follow a 
standard convention of the theory of scattering [see e.g. 
the treatises by Taylor (1972) and by Goldberger & 
Watson (1964) where this point is discussed in 
considerable detail] in which in the vicinity of a 
resonance peak the amplitude of scattering is separated 
into a rapidly varying 'resonance' part and a more 
slowly varying 'potential' part. 

As follows from (8), the magnitude of the resonance 
contribution to the surface reflectivity depends on the 
form of the Green function G(z, ~, h2K2/2m) describing 
one-dimensional propagation of the electron of energy 
h2K2/2m in the potential field Uo(z ), and evaluation of 
the double integral in (8) requires studying the proper- 
ties of this Green function. We start by evaluating this 
function in the crystal bulk, i.e. in the limiting case 
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z, z' ~ c~, where Uo(z ) can be considered as a~eriodic 
function of z. The Green function G(z, z', h K~g/2m) 
satisfies (6) in which E = h2K~g/2m. Bearing in mind 
that any solution of (6) must satisfy the reciprocity 
condition [which follows from the fact that 8(z) is an 
even function of its argument], 

G(z,z',h2K~/2m) = G(z',z, heK~/2m), (9) 

and also that for z # z' it must be proportional to one of 
the two linearly independent Bloch waves b~(z) or 
b_~(z), which describe propagation of the electron in the 
potential Uo(z), we arrive at (for z, z' ~ c~) 

G~(z, z',h2K2/2m) = {2m/hZW[b_~(z), bK(z)]} 

{ b,(z)b_~(z') when z > z' 

× b_~(z)b~(z') when z < z', 

(10) 

where W[b_~(z), b~(z)] is the Wronskian of the two 
Bloch functions b_K(z) and b~(z) of energy h2K~g/2m, 
namely W[b_K(z), b~(z)] = b_~(z)b'~(z) - b~(z)b'_~(z), 
which, since the Schr6dinger equation does not contain 
the first-order derivative, is independent of z (Jeffreys & 
Jeffreys, 1950). The presence of the surface results in 
reflection of Bloch states back into the crystal bulk and 
the Green function acquires the form (for z > z0) 

G(z, z', heK~/2m) = Goo(z, zJ, hZK~ /2m) 

+ 7~(Kg){2m/h2W[b_~(z), bK(z)]) 

x b,,(z)bK(z' ), (11) 

where 7~(Kg) is the amplitude of the coefficient of 
reflection for the Bloch waves incident on the crystal 
surface from inside (i.e. from z ~ +c~). The magni- 
tude of ~(Kg) is determined by the condition of 
continuity of the Green function and its derivative at 
any point in the interfacial region between vacuum and 
the crystal: 

7~(Kg) = [ ~°~(z°)bL~(z°) - ~°Kg(z°)b-"(z°) 
- L ~0Kg (zo)b~,(Zo) - -  ~p~ . , ,  (zo)b,,(Zo) ]' (12) 

where z0 is the coordinate of a point to the right of 
which the potential Uo(z ) can be considered as being 
periodic, and ~OK.(Z ) is a solution of the Schr6dinger 
equation (4) s]tisfying the asymptotic condition 
~OK,(Z) "" exp(-iKgz) in the limit z --~ - o o .  The poles 
of'7C(Kg) lying oh the positive imaginary axis in the 
complex plane of Kg correspond to surface states 
localized at the interface between vacuum and the 
crystal (Davison & St~licka, 1992) and can therefore 
be used as a means of identification of those states. 
Substituting (11) into (8), we arrive at 

g( res) - i{2m 2/];t4Ko W[b ~(z), b~(z)]} 
0 ~ 

x dz dz'~Ko (z)U_g(z)bK(z)b_Az') 
- - 0 0  

× V~(z')q,~)(z ') 
O0 O0 

+ f f dzdz'~+o)(Z)U-dz)b-K(z)b~(~) 
O0 Z 

× u,(z')q,~+0)(z ') 
oo  0o  

+ ~(Kg) f f dzclz'~)(z)U_g(z)b,,(z)b,,(z ') 
--OO - -O~  

x Ug(z')~(+o)(Z')]. (13) 

Examination of this equation shows that it is possible to 
identify all the basic parameters that influence the 
magnitude of the resonance part of the surface 

p(res) is pro- reflectivity. Firstly, the amplitude of ,,o 
portional to 

1/W[b_~(z), bK(z)], 

where W[b,~(z), b~(z)] is the Wronskian of two linearly 
independent Bloch functions corresponding to the 
energy hEK~g/2m. As is shown in the Appendix, the 
imaginary part of w-t[bK(z), b~(z)] is proportional to 
the one-dimensional effective density of bulk states 
associated with the optical potential Uo(z). Secondly, 
the amplitude of the resonance contribution to the 
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Fig. 2. Profiles of the laterally averaged potential of AI(111), Ag(111) 
and Au(l 11) atomic planes for T = 293 K. Solid curve: the real part 
of the potential U~(z) evaluated as a sum of five Doyle-Turner terms 
taken from Dudarev et al. (1995). Dotted curve: the imaginary part 
of the potential U~'(z) evaluated as a sum of five Doyle-Turner 
terms taken from the same source. 
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surface reflectivity depends on the magnitude of matrix 
elements of the form 

f dz~Cr+~(z)U±g(z)b+K(z), (14) 

describing the coupling between two resonating Bloch 
states ~ ( z )  and b~(z), which correspond to the two 
rods involved in the process of scattering. This matrix 
element depends on the extent of the overlap of the 
Bloch states ~Cr+)(z ) and b±K(z) with the Fourier 
components of the potential U±g(z) (the latter quantities 
are in most cases localized in the vicinity of the centres 
of atomic planes parallel to the surface of the crystal, 
see Fig. 2). The third factor affecting the amplitude of 
the resonance contribution to the reflectivity is the 
presence or absence of surface states, i.e. the existence 
of poles of the function R(Kg) in the upper half-plane of 
the complex variable Kg. 

In the following section, we discuss the results of 
numerical calculations of the resonance reflectivity of 
various crystal surfaces and; show that in all cases 
examined the positions of the peaks of the effective one- 
dimensional density of states {i.e. the peaks of the 
imaginary part of W-l[b_~(z), bK(z)], considered as a 
function of h2K2/2m for negative values of this 
quantity} correspond to the positions of the resonance 
peaks of the specular-beam intensity. 

4. N u m e r i c a l  re su l t s  a n d  d i s c u s s i o n  

All the computational results described in this section 
have been obtained using the R-matrix method, the 
previous applications of which have been described 
earlier by Dudarev & Whelan (1994b) and Dudarev, 
Peng & Whelan (1995) and which has recently been 
verified against the numerical techniques developed by 
other groups (Ichimiya, 1995). To ensure the reliability 
of the parameters that we used in our calculations, we 
compare rocking curves calculated using our program 
for the Pt (111) surface with experimental data obtained 
by Marten & Meyer-Ehmsen (1985) (see Fig. 3). All the 
parameters entering numerical calculations have been 
evaluated from first principles following the procedure 
developed by Dudarev et al. (1995) to estimate the 
effect of phonon scattering and by Ritchie & Howie 
(1977) to take into account electronic excitations. No 
fitting procedure has been employed. Despite visible 
disagreement between absolute intensities (it should be 
noted that it is likely that experimental intensities have 
been affected by the presence of surface roughness), the 
positions of peaks in all curves agree very well. In what 
follows, we use numerical results obtained using the 
same computer program to verify the conclusions that 
follow from the analytical consideration of resonance 
scattering given above. 

As an example, we consider scattering from the (111) 
surfaces of three f.c.c, crystals, namely aluminium 

(Z = 13), silver (Z = 47) and gold (Z = 79). The lattice 
constants of these crystals (aA1- 4.05, aAg --- 4.09, 
aAu = 4.08A) do not differ by more than 1%. This 
makes them particularly suitable for the analysis of the 
effects of the variation of the strength of the interaction 
potential and the associated changes in the band 
structure on the positions and intensities of the 
resonance peaks. 

We start by considering Bragg scattering of electrons 
from the one-dimensional potential Uo(z ) shown in Fig. 
2. In the absence of momentum transfer parallel to the 
surface, the intensity of the specular reflection is 
independent of azimuth and represents the 'potential' 
part of the reflection coefficient R0 (p°t) of (7). The 
dependence of the amplitude of the specular beam 
IRa°t) I on the glancing angle of incidence ~ is shown in 
Fig. 4 for all three crystals, together with the density of 
states D(E) = D(h2K2/2m) calculated using (20) at zero 
temperature. The Bloch states have been found by 
diagonalizing transfer matrices describing propagation 
of the electron wave function through an individual bulk 
layer of atoms. As follows from the results shown in 
Fig. 4, in the case of one-dimensional diffraction the 
positions of the peaks in the rocking curves (i. e. in the 
curves showing the dependence of the reflectivity on the 
angle of incidence) coincide with the position of 
forbidden gaps in the spectrum of one-dimensional 
density of states. This fact is well known in diffraction 
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Fig. 3. Dependence of  specular-beam intensity on the glancing angle 

of incidence ( calculated numerically for the Pt (111)_surface and 
E = 19keV. (a) The incident-beam azimuth is along (110) and the 
corresponding experimental rocking curve is taken from Fig. l(a) 
of Marten & Meyer-Ehmsen_(1985). (b) The incident-beam azimuth 
is 29.3 mrad away from (112) and the corresponding experimental 
rocking curve is taken from Fig. l(c) of Marten & Meyer-Ehmsen 
(1985). 15 rods of the zero-order Laue zone have been employed 
(the zero-order rod and seven rods on either side of it) in the 
evaluation of the specular-beam intensity. 
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theory and is often used as an illustration of the 
statement that the incident beam of  electrons is reflected 
back into vacuum if the Bloch wave  corresponding to 
the energy E~°)= h2K~o/2m becomes evanescent and 
cannot propagate into the crystal bulk. 

To understand the behaviour of the resonance part of 
the reflectivity R (res) from (8), we analyse the 
dependence of the intensity of the specular beam as a 
function of the azimuthal angle 17. Introducing spherical 
coordinates and representing the wave vector of the 
incident electrons k in the form k = (kcos(cosf l ,  
k cos ( sin rl, k sin () ,  we  obtain E~ °) = (hEk2/2m) sin ( 
and 

E~g) -- hZKZ/2m 
= (hZk2/2m)[sin 2 ( - 2(g/k)cos ( sin 17 - (gZ/k2)], 

(15) 

where we have assumed that vector g is parallel to the 
y axis. Equation (15) shows that, by varying the 
azimuthal angle 17, we  can tune the value o f /~g)  while 
at the same time not affecting the magnitude of E~ °). 
In other words, by analysing the dependence of the 
intensity of the specular beam as a function of the 
azimuthal angle r/ and keeping the glancing angle of 
incidence ( constant, we can identify the peaks of  the 
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Fig. 4. The potential contribution to the surface reflectivity for the 
Al(111), Ag(111) and Au(111) surfaces (according to its definition, 
this contribution results from one-dimensional scattering of 
electrons by the laterally averaged potential of the crystal) and the 
corresponding one-dimensional densities of states plotted as a 
function of the energy of motion in the direction normal to the 
surface. Energy of electrons E =  100keV and the absolute 
temperature T ---- 293 K. 

reflectivity associated with pure resonance scattering 
[the second term in (7)]. To avoid strong effects 
resulting from interference between resonance and 
potential scattering [for the discussion of  these effects 
see Dudarev & Whelan (1995)], we consider the 
values of  the glancing angle of  incidence ( ,  corre- 
sponding to one of the minima of the intensity, of the 
one-dimensional  rocking curves shown in Fig. 4. For 
h2k2/2m - 100 keV, the positions of the minima of the 
intensity in the rocking curves are ( =  58.8mrad for 
AI [midway between the (777) and (888) horizontal 
Kikuchi lines], ( =  65 .3mrad  for Ag [midway 
between the (888) and (999) horizontal Kikuchi 
lines] and ( =  65 .0mrad  for Au [midway between 
the (888) and (999) horizontal Kikuchi lines]. A set of 
curves illustrating the behaviour of  the resonance part 
of  the reflectivity as a function of  hEI~g/2m, which 
have been computed b~ varying the azimuthal angle r/ 
[which is related to h I~g/2m via (15)],  is shown in 
Figs.  5 - 7  for the (111) surfaces of  A1, Ag and Au, 
together with the curves showing the dependence of  
the density of states D(E) and the effective density of 
states Deff(EE)(see Appendix) on energy for negative 
values o f  h K~g/2m. 

The most striking difference between the curves 
shown in Figs. 5-7 and those of Fig. 4 is that the 
peaks of the resonance part of the reflectivity 
generally coincide with the peaks of the one-dimen- 
sional density of states rather than with forbidden gaps 
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Fig. 5. The resonance contribution to the surface reflectivity, the 
density of states D(E), the effective density of states Deff(E ) and the 
amplitude of the coefficient of internal reflection 7-4 of Bloch waves 
from the surface calculated for the Al(111) surface as a function of 
n r g) " e e gYm , which is related to the azimuthal angle r/by (15). r/= 0 

corresponds to the (112) azimuth. The interval of energies hEKg/2m 
from -100 to 0.0 eV corresponds to an interval of azimuthal angles 
r/from 18.2 to 7.4mrad. 



70 RESONANCE SCATTERING IN RHEED 

as in the case of  one-dimensional diffraction. This 
result is entirely consistent with the solution of  the 
tight-binding model (Dudarev & Whelan, 1994a,b), 
where the density of  states has the form of  a 
~-function peak situated at e0, and the coefficient of  
resonance reflection reaches its maximum in the 
vicinity of  h2K~g/2m = e 0. In more qualitative terms, 
the link between the effective density of  states and the 
resonance reflectivity results from the fact that the 
resonance channel of  scattering is associated with 
scattering via some intermediate states, and this 
requires the very existence of  these intermediate states 
for the resonance part of  the reflectivity to be 
substantial. 

It should be emphasized that the purely tight- 
binding description is not capable of  describing all 
the resonance peaks shown in Figs. 5 -7 ,  which 
represent horizontal tracks across the pattern similar 
to that shown in Fig. 1. In each figure, it is only 
the left-hand peak that is associated with the states 
tightly bound by the potential of  adjacent planes of  
atoms. The second peaks on the right-hand side of  
the diagrams shown in Figs. 6 and 7 correspond to 
energies that exceed the maximum of  the potential 
Uo(z ) shown in Fig. 2 and therefore the relevant 
Bloch states involved in the formation of  a virtual 
resonance state are highly delocalized in real space. 

The only deviation from the rule establishing a 
correspondence between the position of  resonance 

features and the effective density of  bulk states, 
which can be noticed by examining the curves 
shown in Figs. 5 -7 ,  is that the second peak of  the 
density of  states for aluminium situated at 
E~g)_ ~ - 6 e V  does not correspond to any peak in 
the curve showing the azimuthal dependence of  the 
resonance part of  the reflectivity. However, this 
deviation can be easily explained by comparing the 
energy dependence of  D(E) and Deff(E ) in the 
vicinity of  E " - 6 e V ,  where it is seen that the 
density of  states D(E) is almost insensitive to the 
presence of  the imaginary part of  the potential. This 
fact shows that the Bloch states, which contribute to 
the density of  states in this region of  energy, have 
nodes in the vicinity of  the centres of  atomic planes. 
This leads to the vanishing of  the matrix element 
(14), which determines the strength of  coupling 
between two resonating Bloch states and the very 
possibility of  appearance of  the corresponding 
resonance peak in a rocking curve. 

The remaining question concerns the contribution 
to the reflectivity resulting from resonance scattering 
via surface states, i.e. the contribution of  the type 
discussed in detail by McRae (1979). To identify the 
energies of  the surface states, in Figs. 5 -7  we have 
plotted the dependence of  the coefficient ~ of  
internal reflection of  one-dimensional Bloch waves 
from the surface (12) for negative values of  
h2K2/2m, and for the case where the imaginary 
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part of the potential Uo(z) vanishes. As follows from 
some general theorems of the theory of scattering, 
the poles of R(Kg) situated in the upper half-plane 
of the complex variable Kg give the energies of the 
surface states localized at the interface between the 
crystal and vacuum. This view. contrasts with a 
previous proposal made by Peng (1994), where the 
existence of a surface state was linked to a 
singularity of an (external) refection coefficient for 
a real value of the wave vector. As follows from 
the results shown in Figs. 5-7, in all the three cases 
considered here [namely AI(111), Ag(111) and 
A u ( l l l )  surfaces], the surface states do exist and 
their energies almost coincide with the upper edge 
of the lowest band of the bulk states. The origin of 
those surface states is associated with the slight 
deviation of the form of the potential of the outer 
layer of atoms from that of a bulk layer. C a n  we 
say that these states are responsible for the 
appearance of the resonance peaks of the reflectiv- 
ity? There are two reasons why the answer to this 
question should be negative. The first is that, as 
follows from examination of the curves shown in 
Figs. 5-7, the number of resonance peaks of the 
reflectivity exceeds the number of surface states, and 
some of the resonance peaks do not correspond to 
any surface at all. The second is that even in the 
case where the energy of the surface state and  the 
position of the resonance peak almost coincide, the 
effective inelastic width of both the surface and bulk 
states [see e.g. the curves showing the dependence 
of Deft(E ) on energy E] exceeds many times the 
characteristic energy separation between the surface 
state and the upper edge of the band of bulk states 
making them indistinguishable, and therefore making 
meaningless the question of separation of the 
contributions of all these states to the intensity of 
the specular beam. 

Our final comment concerns the interpretation of 
the results of numerical calculations performed by 
Peng (1994). As follows from examination of the 
curves shown in Figs. 2(c) and 3(c) of the paper by 
Peng (1994), the intensity of the specular beam is a 
maximum in the region between two singularities in 
the Bloch-wave excitation amplitudes. Taking into 
account that in the case considered by Peng (1994) all 
the features in the rocking curves are slightly shifted 
owing to the finiteness of the matrix element of 
resonance coupling between two rods, we can 
conclude that the singularities shown in Figs. 2(c) 
and 3(c) of Peng (1994) are in fact associated with 
singularities of the density of states at the band edges 
similar to those shown in Fig. 4 of the present paper. 
The origin of the resonance peaks shown in Figs. 2(d) 
and 3(d) of Peng (1994) can therefore be attributed to 
resonance scattering via Bloch states belonging to a 
band situated at negative E~ g), a conclusion entirely in 

agreement with the considerations of the present 
paper. 

5. Conclusions 

In this paper, we have presented some qualitative, 
analytical and numerical arguments that make it 
possible to classify the processes leading to resonance 
scattering of high-energy electrons from surfaces. We 
have proposed that the factor that is primarily 
responsible for the appearance of the resonance maxima 
of the surface reflectivity is the existence of peaks in the 
effective density of bulk states corresponding to one- 
dimensional motion of the electrons in the direction 
normal to the surface. This is in contrast to the case of 
Bragg diffraction, where the peaks of the reflectivity 
correspond to forbidden gaps in the spectrum ofBloch 
states. We have also shown that the intensities of the 
resonance peaks depend on the values of the matrix 
elements describing resonance coupling between two 
Bloch states, and that in all the cases considered the 
effects associated with the existence of surface states are 
unimportant. 
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using the facilities of the Materials Modelling 
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APPENDIX A 

In this Appendix, we derive a simple formula relating 
one-dimensional bulk density of states D(E) and the 
Wronskian of two linearly independent solutions of 
the Schr6dinger equation corresponding to the energy 
E. Assuming the potential Uo(z ) to be real, we 
represent the Green function G~o(z,z' ,E) in two 
equivalent forms: 

OO 

G~(z, z j, E) = f (dq/2rt)[bq(z)b_q(~)]/(E - ~q -Jr- iO) 
- - 0 0  

= {2m/h2W[b_,~(z), bE(z)]} 

{ bK(z)b_,~(z' ) when z > z' (16) 

x b_K(z)bK(z') when z < z', 

where e K - - E  and we have taken into account that 
bq(Z)--b_q(Z). The Bloch functions are normalized by 
the condition 
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z + d  

f d~bq(~)b_q(~)-- 1, (17) 
z 

which is assumed to be satisfied for arbitrary z, and d is 
the lattice constant. Considering the imaginary part of 
the Green function, 

o o  

Im Goo(z, z, E) = -Jr f (dq/2rr)~(E - eq)bq(z)b_q(Z) 
- - 0 0  

= (2m/h 2) Im{ 1/W[b_,:(z), b~(z)]} 

× b,:(z)b_,:(z), (18) 

and taking into account the definition 

D(E) = f (dq/2rr)~(E-  %), (19) 
- -00  

we arrive at 

D(E) - - - (2m/ r rh  2) Im{ 1/W[b_,~(z), b~(z)]}. (20) 

The latter definition can be extended to a more general 
case where the one-dimensional potential contains a 
non-vanishing imaginary part (i.e. to the case of the 
optical potential, which is often used to describe 
scattering of high-energy electrons by crystals [see 
e.g. Dudarev et al. (1992)]. Although (18) and (19) 
cannot be directly applied to this more general case, and 
therefore the relevant quantity should now be called the 
'effective' density of states Deft(E), numerical studies 
showed that the right-hand side of (20) remains a 
positive quantity. Fig. 8 illustrates the difference 
between the density of states D(E) (which is the quantity 
corresponding to zero imaginary part of the potential) 
and the effective density of states Defr(E ) calculated for 
the potential of the A u ( l l l )  atomic planes using (20) 
and taking into account the imaginary part of the 
potential resulting from scattering of high-energy 
electrons by phonons at T = 293 K. 
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Fig. 8. The one-dimensional band-structure diagram, the one- 

dimensional density of states D(E) and effective density of states 
De~(E ) calculated for the potential of the Au(111) atomic planes. 
Note the marked difference between D(E) and Den(E) resulting 
from absorption effects. 
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